This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Attempts to Obtain Optically Active Trifloromethyl Aryl Sulfoxides *via* Resolutions of the Racemates

Jozef Drabowicz^a; Jerzy Luczak^a; Marian Mikolajczyk^a; Natasza V. Kondratenko^b; Lew M. Yagupolski^b a Department of Heteroorganic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland ^b Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine

To cite this Article Drabowicz, Jozef , Luczak, Jerzy , Mikolajczyk, Marian , Kondratenko, Natasza V. and Yagupolski, Lew M.(2005) 'Attempts to Obtain Optically Active Trifloromethyl Aryl Sulfoxides \emph{via} Resolutions of the Racemates', Phosphorus, Sulfur, and Silicon and the Related Elements, 180: 5, 1417 - 1418

To link to this Article: DOI: 10.1080/10426500590912772 URL: http://dx.doi.org/10.1080/10426500590912772

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 180:1417-1418, 2005

Copyright © Taylor & Francis Inc. ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500590912772

Attempts to Obtain Optically Active Trifloromethyl Aryl Sulfoxides *via* Resolutions of the Racemates

Jozef Drabowicz Jerzy Luczak Marian Mikolajczyk

Center of Molecular and Macromolecular Studies, Department of Heteroorganic Chemistry, Polish Academy of Sciences, Lodz, Poland

Natasza V. Kondratenko Lew M. Yagupolski

Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine

Keywords Optical activity; resolution of racemates; sulfoxides

The presence of perfluoroalkyl chains in the sulfoxide structure should create a very interesting group of chiral sulfinyl derivatives from optically active compounds. To the best of our knowledge, this kind of sulfoxides has not been reported so far as optically active species. Only recently one of our groups has reported the first successful attempts to prepare optically active trifluoromethyl phenyl sulfoxide **1a** based on asymmetric oxidation of the corresponding sulfide. In this communication, we disclose the preliminary results of testing other protocols for the preparation of sulfoxides **1a–d** as optically active species.

$$4-X-C_6H_4-S(O)-CF_3$$
 a , $X=H$; b , $X=Cl$; c , $X=F$; d , $X=OH$

SCHEME 1

We have found that the oxidative kinetic resolution procedure based on the partial oxidation of a starting sulfoxide to the corresponding sulfone does not work for racemic mixtures of **1a–c** because of their complete inertness to the Davis dichlorocamphorsulfonyloxaziridine. Similarly, the nonclassical optical resolution *via* complexation with chiral

Received July 9, 2004; accepted October 5, 2004.

Address correspondence to Jozef Drabowicz, Center of Molecular and Macromolecular Studies, Department of Heteroorganic Chemistry, Polish Academy of Sciences, 90-363 Lodz, Sienkiewicza 112, Poland. E-mail: draj@bilbo.cbmm.lodz.pl

host molecules cannot be applied to the sufloxides $\mathbf{1a-c}$ because of their inability to form supramolecular complexes with β -cyclodextrin³ or mandelic acid.³ With the enantiomers of 1,1-dihydroxy-2,2′-binaphthol, the sulfoxides $\mathbf{1a-c}$ form supramolcular complexes (^{19}F NMR assay) but with unknown ratio and selectivity. On the other hand, we have succeeded in the isolation of the enantiomers of these sulfoxides by enantioselective liquid chromatography on analytical Chiralcel OD or Chiralpak AS column with hexane-i-Pr-OH mixtures as a mobile phase.

It is of interest to note that phenyl trifluoromethyl sulfoxide **1a** could not be resolved on a Chiralpak OP column. The CD spectra of the isolated enantiomers [recorded in methanol solutions on a CD 6 dichragraph (Jobin—Yvon) using cells with 5-mm path length] are very similar to the CD spectra of optically active alkyl p-tolyl sulfoxides. Taking into account this observation, we suggest that the dextrorotatory enantiomers of trifluoro-methyl aryl sulfoxides **1a–d** are of the (R) absolute configuration at the stereogenic sulfinyl sulfur atom.

REFERENCES

- J. Drabowicz, J. Luczak, and M. Mikolajczyk, a communication presented at the XIV European Symposium on Fluorine Chemistry, July 11–16, 2004, Poznan, Poland.
- [2] F. A. Davis, R. T. Reddy, W. Han, and P. J. Carroll, J. Am. Chem. Soc., 114, 1428 (1992).
- [3] J. Drabowicz, M. M. Green, P. Laur, and J. T. Melillo, unpublished results.
- [4] K. Misow et al., J. Am. Chem. Soc., 87, 1958 (1965).